
Journal of Scientific & Industrial Research
Vol. 82, March 2023, pp. 316-321
DOI: 10.56042/jsir.v82i03.71759

DeeR-Gen: A Pseudo Random Number Generator for Industry 4.0 / IoT

Deena Nath Gupta* & Rajendra Kumar
Jamia Millia Islamia, New Delhi 110 025, India

Received 02 August 2022; revised 18 September 2022; accepted 06 October2022

Random binary bit sequences or random numbers are very useful in cryptographic applications. These sequences are used
as a key in different encryption algorithms. Also, they can be used as random nonce in many mutual authentication protocols.
Because these sequences are used at very basic level in cryptographic applications there generation should be fast, secure, and
energy-efficient. Particularly in the case of Industry 4.0/IoT, a lightweight implementation is much needed along with high
security and rapid production. The earlier generators of random numbers used the true source of randomness but the same is not
feasible in current scalable Industry 4.0/IoT scenario. Many works have already been done to generate random numbers through
PRNGs. Some examples are J3Gen, Warbler, LAMED, and ARROW. However, it is essential to bring a completely
programmed, highly secured, energy efficient and a fast paced algorithm for random number generation. In this paper, a novel
algorithm, named DeeR-Gen, which works with one multiplexer and two NLFSRs is presented. It requires only 245 GE on
ASIC, lowest hardware requirement till date. Proposed methodology has also been tested for EPC test of randomness. The
authors found the proposed algorithm secure and energy-efficient to be used in any lightweight cryptographic algorithm.

Keywords: IoT, Industry 4.0, Lightweight cryptography, Random nonce, Secret key

Introduction
The communications between constrained devices

needs to be secure so that more applications can adopt
Industry 4.0/IoT environment. One of the basic
requirements of security mechanisms is random
number. The security mechanisms use the random
numbers in many ways. Random numbers can be used
as a secret code as well as random bit sequences can
also be used as a key for encryption. These random
numbers can be generated from True Random Number
Generators (TRNGs) or Pseudo Random Number
Generators (PRNGs). Both of them are having their
strengths. TRNGs are true source of randomness that
produces highly random outputs while PRNGs are
independent of any outside source and hence can
produces random numbers in a fast pace.1–3

Many researchers were replicating the output of
TRNGs by using different software methodologies.
The first such method was presented by Blum
BlumShub in 1986 into their article named “A Simple
Unpredictable Pseudo Random Number Generator.”
Other proposals include the generation of random
numbers by using the concept of genetic
programming, primitive polynomials, circuit changing
their state from meta-stable to bi-stable and Mersenne

twister. All the above concepts were successful to
generate random numbers as per the requirement of
cryptographic application. However, the current
cryptographic requirements are somewhat different
from the previous one seeing the lightweight
implementation scenario.4–7

In Industry 4.0/IoT, almost 80% of the total
communications are happening between constrained
devices only. Hence, the needs and requirements of
constrained devices must be taken care of. Due to
their low energy design, constrained devices are not
able to run highly complex programs. This gives birth
to the requirement of lightweight cryptography.8 To
generate random binary sequences that contain low
power to run is challenging. To cop up with this
challenge the mathematicians suggested using the
shift operations. The shift operations take the lowest
CPU power among all other logical operations.
Hence, many research starts including shift operations
into their design. Some of the examples are, J3Gen,
Melia Segui, Warber, LAMED, and ARROW.9–12

Shift registers can be implemented by using FPGA
(Field Programmable Gate Arrays). It can be seen that
some of the designs used the concept of LFERs
(Linear Feedback Shift Registers) while others used
the concept of NLFSRs (Non-Linear Feedback Shift
Registers).13 To found a perfect tradeoff between
power usage and security, many of the researchers

—————
*Author for Correspondence
E-mail: prof.dev.cse@gmail.com

GUPTA & KUMAR: DeeR-GEN: A PSEUDO RANDOM NUMBER GENERATOR 317

started using a combination of LFSRs and NLFSRs in
their design. These LFSRs/NLFSRs were then seeded
to get the initial values for computation. Many authors
use the primitive polynomials of required degree, i.e.,
polynomial of degree 16 or polynomial of degree 32,
or any other required degree of polynomial to seed
their shift registers. An update function is then
required to get the input value based on the FSR
values for the next iteration.

Many researchers used the polynomials directly
while some others used the concept of selection
criteria for selecting particular polynomial for seeding
the FSRs. The direct use of polynomial is not secured
because any attacker can have the values from the
applied polynomial and can guess the outputs easily.14
On contrary, polynomial selection from pool of
polynomials based on the values received from
selection wheels is hard to guess. For example, the
proposed mechanism is using a list of eight
polynomials and a selection criterion is applied on
them to choose one polynomial for the seeding
purpose. In this way, the chance of knowing the
values from selected polynomial is reduced to eight
folds. Different researchers used different mechanism
for the selection operation on polynomials. Some of
the examples are roulette wheel, random selection,
and circuit switch based selection mechanism.

In the presented article, the authors proposed a
pseudo random binary bit sequence generator based
on one polynomial selection mechanism (multiplexer)
and two NLFSRs. The proposed architecture produces
secure random binary bit sequences to be used in
cryptographic applications. The generator will be fast
enough to produce the required amount of random
numbers for a scalable Industry 4.0/IoT application.
The proposed algorithm is tested for its power
consumption and the authors found that it requires
vary low CPU power to execute.

Related Work
LAMED architecture for PRNG is proposed in 2007

which is based on an Initialization Vector (IV) and a
key.9 The update function used in LAMED is different
for odd length sequences and even length sequences.
LAMED was originally proposed as 32-bits sequence
generator. However keeping the specifications of EPC
in mind, an 16-bits sequence generator is proposed and
referred as LAMED-EPC. Another design is proposed
a PRNG in 2008 based on simple LFSR.14 Although
this was the first PRNG of this kind, it was not that
much successful because of its inherent linearity.

In 2011, two different architectures for PRNGs were
proposed. AKARI was one of them and it is yet
another architecture based on a non-linear filter
function.5 Two alternatives were proposed, AKARI-1,
and AKARI-2. AKARI-1 iterates its filter function for
64 rounds where AKARI-2 iterates for 24 rounds only.
The initialization of x0 and x1 is same for both the
versions but there is a slight difference in the
calculation of z. Also, the iterative function is different
for both the version. In AKARI, the contributors tried
to incorporate both the requirements of lightweight
cryptography, i.e. low power requirement and low area
requirement. However it did not succeed in unified
design. AKARI-1 tries to lower the power requirement
while AKARI-2 tries to lower the area requirement.

A 16-bit PRNG is proposed with eight different
polynomials using three TRN bits, i.e. 23 = 8. The
expected Gate Equivalent for the proposed PRNG was
761. It is also tested for suitability of the design with
EPC global and found it suitable to be used in
lightweight cryptographic algorithms. The randomness
test for the generated sequences was also performed
and the obtained results were satisfactory.15–21

J3Gen is another design for generating pseudo
random bit sequences proposed in 2013.(12) The
design was based on a physical source of true
randomness and a deterministic LFSR. A decoding
logic is used to select one polynomial out of eight
given. This decoding logic works on the input from a
TRN bit and a clock input. The lowest GE
requirement for J3Gen is 440 for its 16-bits LFSR and
8-bits polynomial version while the highest GE
requirement for J3Gen is 3921 for its 64-bits LFSR
and 32-bits polynomial version.

Proposed Methodology
The authors proposed a new methodology (Fig. 1)

for generating the pseudo random binary bit sequences
those will perfectly replicate the true random binary bit
sequences. The generated sequences will be suitable to

Fig. 1— Selection of polynomial

J SCI IND RES VOL 82 MARCH 2023 318

be used in any cryptographic applications. The
authors are using one 4×1 multiplexer along with two
16-bit NLFSRs for their design. At the moment the
Tag reaches the periphery of the Reader, the
multiplexer inside the Reader will be triggered. It will
generate one output from four possibilities. This
output (00, 01, 10, or 11) will be appended at MSB
with 1 and 0 separately. This will ultimately produce
(100, 101, 110, or 111) as input for first NLFSR and
(000, 001, 010, or 011) as input for second NLFSR.
The respective polynomial from the list of
polynomials will be taken as input to both the
NLFSRs.

These input numbers will be mapped with a list of
polynomials. The respective polynomial will be chosen
from the list of polynomial as shown in Table 1. These
polynomials are selected from the list of primitive
irreducible polynomials of degree 16. Also these
NLFSRs will be updated on the basis of feedback
functions of 16-bits Fibonacci NLFSRs with the period
2n-1 respectively as presented in Table 1. The update
functions can be chosen from the eight availabilities.
The stored update functions are [0, 1, 2, 3, 9, (6, 14)],
[0, 1, 5, 13, 14, (14, 15)], [0, 1, 11, 12, 13, (5,15)], [0,
2, 5, 10, 14, (6,14)], [0, 2, 6, 11, 12, (14, 15)], [0, 2, 7,
8, 10, (3, 6)], [0, 2, 7, 8, 13, (3,15)], and [0, 4, 8, 9, 10,
(8,12)]. Also, the update function will keep changing
on each round. The updated function can be generated
as per the given Eq. (1). For example, the update
function for {0, 1, 2, 3, 9, (6, 14)} will be:

f(X0,X1,X2,X3,X6,X9, X14) = Xo⊕ X1⊕ X2⊕ X3⊕ X9⊕
X6X14 … (1)

The 16-bits seed in the NLFSR based on the
polynomial at input number 000 will be
1000000111101110. Please note that the positions
having a power of X are given 1 and the others are
given 0 here. The 1 at the last position of each
polynomial will be ignored.

After seeding the NLFSRs, the tangled architecture
will be followed for generating a random binary digit.
The tangled architecture is demonstrated in Fig. 2.
The last bit of both the NLFSRs will be XORed and
this value will again be XORed with the output of
both the update functions separately. The resultant
from both the operations will be inserted in both the
NLFSRs separately from rear end.

Also, these calculated updates will be XORed
again and the resultant will be taken out as output
from the PRNG. By repeating the same process
16 times, the methodology will produce a 16-bits long
random binary bit sequence. If any application needs
longer bit sequences then the polynomials can be
chosen accordingly. These sequences can also be used
as random numbers/codes by just converting them
into their hexadecimal or ACII equivalent.

Results and Discussion
The proposed methodology is programmed in C#

language on NET framework. The authors used
Intel(R) Core(TM) i3-5005U CPU @ 2 GHz system
to analyze their code. The generated random
sequences are tested for the suitability with EPC C1
Gen2 randomness test.17 In the subsequent subsection
the results of different tests will be given.

Suitability with EPC Gen2
The requirements of EPC Gen2 for random binary

bit sequences are three-fold. The first one is related to
the frequency of occurrence of different sequences.
Any 16-bits sequences should fall in between the
probability as per Eq. (2).

{Pmin = 0.8/216} < Prob(S) < {Pmax =1.25/216} … (2)

The second requirement is related to duplicate
sequences. The same 16-bits sequences should not be
repeated for more than 0.1% of times in a generation
of 10,000 sequences. The third requirement is related

Table 1 — List of primitive polynomials with update functions

Input
Number

Polynomial

000 x^16 + x^9 + x^8 + x^7 + x^6 + x^4 + x^3 + x^2 + 1
001 x^16 + x^13 + x^12 + x^10 + x^9 + x^7 + x^6 + x^1 + 1
010 x^16 + x^13 + x^12 + x^11 + x^7 + x^6 + x^3 + x^1 + 1
011 x^16 + x^13 + x^12 + x^11 + x^10 + x^6 + x^2 + x^1 + 1
100 x^16 + x^14 + x^13 + x^12 + x^6 + x^5 + x^3 + x^2 + 1
101 x^16 + x^15 + x^10 + x^6 + x^5 + x^3 + x^2 + x^1 + 1
110 x^16 + x^15 + x^11 + x^10 + x^9 + x^6 + x^2 + x^1 + 1
111 x^16 + x^14 + x^13 + x^12 + x^10 + x^7 + 1 Fig. 2 — Process of generating random bit from tangled NLFSRs

GUPTA & KUMAR: DeeR-GEN: A PSEUDO RANDOM NUMBER GENERATOR 319

with the guessing of correct sequence. Considering all
previous sequences is known to the adversary, the
chance of getting the next 16-bits sequence should be
less than 0.025%.

The authors tested their code for all three
requirements of EPC Gen2. It can be seen that the
proposed methodology fulfills every requirement of
EPC Gen2 standard. For the first requirement, the
authors generated 30 million 16-bits binary
sequences. The obtained result shows the fulfillment
of Eq. (2). The statistics can be seen from Fig. 3.
Many of the researchers stated that the EPC test is not
very much suitable for current scenario. Hence, the
author takes care of this and tried to produce stronger
generator. The results in Fig. (3) show that the
proposed generator produces better result than the
required one by EPC. It can be seen that as the
number of sequences generated grows, the percentage
of repetition falls. This result is particularly very
beneficial in case of scalable environments, such as
IoT. For the second requirement of EPC test, the
authors run their code for ten different rounds to
generate 10,000 number of 16-bits binary sequences.
The obtained results are presented in Table 2. It can
be seen in each round that more than 9200 sequences
are unique. Only few of the sequences are repeated

twice, thrice, or four times. The highest repetition for
four times gives a percentage of 0.04% that is too less
in comparison to the allowed 0.1% and hence authors
claimed that the proposed PRNG is suitable to be used
in a cryptographic environment.

For the third requirement, the methodology needs
to be revisited. It can be seen that at the very first step
it selected one out of four possible inputs leading the
probability of correct selection to ¼ and then at the
time of update function selection it again choses one
out of eight possibilities leading the cumulative
probability to 0.0132. This is clearly very less than the
allowed 0.025. Hence, is it clear that the proposed
methodology pass every test from EPC Gen2 and with
this the authors claim that the proposed method is
very suitable to be used in a lightweight cryptographic
security schemes.

Power Analysis
In cryptographic operations, the energy required

depends on the average power (Pavg) and the
computation time t. In battery-powered devices,
energy consumption is a major parameter which is
affected by the time the battery is able to provide
electricity. While passively powered devices (such as
EPC Gen2 tags) carry only small amounts of power,
they are generally capable of connecting to a reader
for an extended period of time. In other words, the
amount of energy does not matter as long as the
calculation can be done within a reasonable amount of
time in the EPC Gen2 tags.18 A large number of
digital circuit designs are built using standard CMOS
transistors in order to achieve low power consumption
and robustness. An implementation using CMOS
technology is therefore appropriate for analyzing
power consumption.19

A key aspect of the design phase of a security
implementation is to ensure that the IC's dissipation

Table 2 — Analysis based on 10,000 generated sequences

Round No. of sequences Highest repetition (%) Unique sequences (%)

Unique Repeated twice Repeated thrice Repeated four times

1 9267 677 28 0 0.03 92.67
2 9220 718 31 0 0.03 92.20
3 9239 705 25 2 0.04 92.39
4 9229 702 33 1 0.04 92.29
5 9242 667 41 3 0.04 92.42
6 9231 673 45 2 0.04 92.31
7 9238 685 34 3 0.04 92.38
8 9299 644 27 1 0.04 92.99
9 9297 634 33 1 0.04 92.97
10 9244 691 31 1 0.04 92.44

Fig. 3 — Percentage of repetitions of same sequences

J SCI IND RES VOL 82 MARCH 2023

320

does not exceed its power budget for operation. Based
on Feldhofer et al.'s estimations, cryptographic
operations consume approximately 4 μW of power.18
Dynamic and static power consumptions are added up
to calculate the power consumption of CMOS
circuits. Due to its small size and low static power
consumption, it can be ignored in the circuit design of
the proposed implementation. While direct measures
of power dissipation may be feasible, a simple method
for estimating the dynamic dissipation of power is to
calculate the power loss during charge and discharge
of capacitances.19 A system with a small number of
logic gates dissipates power as shown in Eq. (3).

P = p01CLV2
DDfclk … (3)

The capacitor CL along the critical path represents
the load capacitance and the logic state p01
represents the transition from low to high in one clock
cycle. Combined with CL, p01 can also be expressed
as the average capacitance switched during each clock
cycle. Clock frequency is represented by fclk, and
system supply voltage is represented by VDD. The
factors in this equation that influence the power
consumption are minimized when designing measures
to reduce it. For large ICs with many logic states
transitions per clock cycle, this formula has difficulty
being applied due to difficulties in stating the logic
states transitions. Nonetheless, it is an adequate
method for estimating the power consumption of
small circuits.

It is estimated that the Load Capacitance (CL) for
each GE is approximately 3 fF based on
measurements presented by Etrog et al.20 Passive low-
cost RFID uses a voltage source of 1 V and an
operating frequency of 100 kHz, which have been
previously stated.7 For our PRNG proposal
that executes in serial, Eq. (1) returns an estimate of
7.35 nW of average power consumption, assuming
that all GEs are switched for every clock cycle. Based
on existing literature, and given the available budget
of 4 μW of power consumption for cryptographic
operations for UHF technologies, the proposed
estimation is consistent.21

Performance Analysis
Implementation of a 4×1 multiplexer can be done

with 11 numbers of 2-input NAND Gates and hence

required only 11 GE on ASIC. A 16-bits FSR is made
up of 16 D flip-flop placed serially. One D flip-flop
needs 5 numbers of 2-input NAND Gates and hence
required only 5 GE area on ASIC. For a single
NLFSR, the design will require 80 GE. Since, this
design is having 2 NLFSRs a total of 160 GE will be
required for implementing two 16-bits NLFSRs. The
update function of a single NLFSR is requiring a total
of 18 GE. Hence, two simultaneous update operations
on two different LFSRs will require a total of 36 GE.
Around 26 GE will be required to implement an 8 × 1
multiplexer for selecting one update function among
the eight available. The further design of DeeR-Gen is
having four more XOR operations and hence they
need 12 more GE. Combining all the values together
the total area requirement for the DeeR-Gen design
will be (11 + 80 + 80 + 18 + 18 + 26 + 12) = 245 GE.
The comparison of different lightweight PRNG
proposals is given in Table 3.

The number of required gate equivalent for one of
the update function in Eq. (1) is illustrated in Fig 4. It
is worth noticing that all the update function will take
the same number of GE for their execution.

Conclusions

Highly secured yet energy-efficient random
number generator is proposed that is efficient both in
terms of energy and area requirements. The proposed
method, DeeR-Gen, takes only 245 GE on ASIC,
lowest area requirement by any of the known PRNG.
Also the energy requirement of the digital circuit is
7.35 nW, much lower than the permissible range of 4
μW for constrained environments. In addition to
energy and area requirements, the authors also tested
the generated sequences for randomness. EPC
requirements were executed and it is found that the
proposed PRNG passed all the tests. This shows that

Table 3 — GE comparison of lightweight PRNG proposals

PRNG Trivium LAMED Grain Melia-Segui J3Gen DeeR-Gen

GE Count 1857 1585 1294 453 439 245

Fig. 4 — Circuit diagram for update function

GUPTA & KUMAR: DeeR-GEN: A PSEUDO RANDOM NUMBER GENERATOR

321

the generated sequences are highly suitable to be used
in a lightweight cryptographic environment. In future,
authors will consider different arrangements of
LFSRs and NLFSRs to produce yet another level of
secure and lightweight random binary bit sequences.
Also, different degree of primitive polynomials will
be checked for better seeding of the FSRs.

References
1 Anand R, Sinha A, Bhardwaj A & Sreeraj A, Flawed security of

social network of things, in Handbook of Research on Network
Forensics and Analysis Techniques (IGI Global) 2018, 65–86,
https://doi.org/10.4018/978-1-5225-4100-4.ch005.

2 Gupta A, Srivastava A, Anand R & Tomažič T, Business
application analytics and the internet of things: The connecting
link, In New Age Analytics (Apple Academic Press) 2020,
249–273.

3 Gupta R, Shrivastava G, Anand R & Tomažič T, IoT-based
privacy control system through android, In Handbook of
E-business Security (Auerbach Publications) 2018, 341–363

4 Melia-Segui J, Garcia-Alfaro J & Herrera-Joancomarti J,
Analysis and Improvement of a Pseudorandom Number
Generator for EPC Gen2 Tags, Financial Cryptography and
Data Security: Lect Notes Comput Sci (6054) (2010),
https://doi.org/10.1007/978-3-642-14992-4_4.

5 Martin H, San Millan E, Entrena L, Lopez P & Castro J A: A
pseudorandom number generator for secure lightweight
systems, IEEE 17th Int on-line Test Symp (Athens, Greece)
2011), 228–233, https://doi.org10.1109/IOLTS.2011.5994534.

6 Tsoi K H, Leung K H & Leong P H W, Compact FPGA-based
true and pseudo random number generators, 11th Proc Annu
IEEE Symp Field-Program Cust Comput Mach (2003), 51–61,
https://doi.org/10.1109/FPGA.2003.1227241.

7 Melià-Seguí J, Garcia-Alfaro J & Herrera-Joancomartí J,
Multiple-polynomial LFSR based pseudorandom number
generator for EPC Gen2 RFID tags, 37th Annu Conf IEEE Ind
Electronsoc (2011) 3820–3825, https://doi.org10.1109/
IECON.2011.6119932.

8 Gupta A, Asad A, Meena L & Anand R, IoT and RFID-Based
Smart Card System Integrated with Health Care, Electricity,
QR and Banking Sectors, Artif Intell Med Proc Int Symp
(Springer, Singapore) 2023, 253–265.

9 Peris-Lopez P, Hernandez-Castro J C, Estevez-Tapiador J M
& Ribagorda A, LAMED — A PRNG for EPC Class-1

Generation-2 RFID specification, Comput Stand Interfaces,
31(1) (2009) 88–97, https://doi.org/10.1016/j.csi.2007.11.013

10 Mandal K, Fan X & Gong G, Warbler: A Lightweight
Pseudorandom Number Generator for EPC C1 Gen2 Passive
RFID Tags, Int J RFID Secur Cryptogr, 2(2) (2013) 1–10.

11 López A B, Encinas L H, Muñoz A M & Vitini F M, A
lightweight pseudorandom number generator for recuring the
internet of things, IEEE Access, 5 (2017) 27800–27806,
https://doi.org/10.1109/ACCESS.2017.2774105.

12 Melià-Seguí J, Garcia-Alfaro J & Herrera-Joancomartí J,
J3Gen: A PRNG for Low-Cost Passive RFID, Sensors, 13(3)
(2013) 3816–3830, https://doi.org/10.3390/s130303816.

13 Eljadi F M A & ShaikhliI F T A, Dynamic linear feedback
shift registers: A review, the 5th Int Conf Inform Commun
Technol Muslim World (IEEE) 2015, 1–5, https://doi.org10.
1109/ICT4M.2014.7020598.

14 Che W, Deng H, Tan W & Wang J, A random number
generator for application in RFID tags, Networked RFID
Systems and Lightweight Cryptography, (2008) 279–287,
https://doi.org/10.1007/978-3-540-71641-9_16.

15 Melia-Segui J, Garcia-Alfaro J & Herrera-Joancomarti J, A
practical implementation attack on weak pseudorandom
number generator designs for EPC Gen2 tags, Wirel Pers
Commun, 59(1) (2011) 27–42, https://doi.org/10.1007/s11277-
010-0187-1

16 Chen J, Miyaj A, Sato H & Su C, Improved Lightweight
Pseudo-Random Number Generators for the Low-Cost RFID
Tags, IEEE Trustcom/BigDataSE/ISPA 2015, 17–24,
https://doi.org/10.1109/Trustcom.2015.352.

17 E P C global, EPC radio-frequency identification protocol
class-1 generation-2 UHF RFID for communication at 860-960
MHz (2008), https://www.gs1.org/sites/default/files/docs/
epc/Gen2_Protocol_Standard.pdf.

18 Feldhofer M & Wolkerstorfer J, Hardware implementation of
symmetric algorithms for RFID security, in RFID Security
(Springer, Boston, MA) 2009, 373–415.

19 Cole P H & Ranasinghe D C, Networked RFID Systems and
Lightweight Cryptography (Springer) 10 (2008) 157–167.

20 Etrog J Robshaw M & Savry O, The Possibilities and
Limitations of Cryptography in Constrained Devices (INRIA
and Orange Labs) 2009

21 Boni A & Facen A, Ultra low-voltage analog circuits for UHF
RFID devices in 180 nm CMOS technology, Analog Integr
Circuits Signal Process, 63(3) (2010) 359–367.

